On certain perturbation problems and singular equations of magnetohydrodynamics
نویسندگان
چکیده
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Singular perturbation problems for nonlinear elliptic equations in degenerate settings
Here N ≥ 1, g(s) ∈ C(R,R) is a function with a subcritical growth, V (x) ∈ C(R ,R) is a positive function and 0 < ε 1. Among solutions of (0.1)ε, we are interested in concentrating families (uε) of solutions, which have the following behavior: (i) uε(x) has a local maximum at xε ∈ R and xε converges to some x0 ∈ R as ε → 0. (ii) rescaled function vε(y) = uε(εy + xε) converges as ε → 0 to a solu...
متن کاملOn some anisotropic singular perturbation problems
We investigate the asymptotic behavior of some anisotropic diffusion problems and give some estimates on the rate of convergence of the solution toward its limit. We also relate this type of elliptic problems to problems set in cylinder becoming unbounded in some directions and show how some information on one type leads to information for the other type and conversely. 1. A model problem The g...
متن کاملA Singular Perturbation Problem in Integrodifferential Equations
Consider the singular perturbation problem for εu(t; ε) + u(t; ε) = Au(t; ε) + ∫ t 0 K(t− s)Au(s; ε) ds+ f(t; ε) , where t ≥ 0, u(0; ε) = u0(ε), u (0; ε) = u1(ε), and w(t) = Aw(t) + ∫ t 0 K(t− s)Aw(s)ds+ f(t) , t ≥ 0 , w(0) = w0 , in a Banach space X when ε → 0. Here A is the generator of a strongly continuous cosine family and a strongly continuous semigroup, and K(t) is a bounded linear opera...
متن کاملSingular Perturbation of Optimal Control Problems on MultiDomains
The goal of this paper is to study a singular perturbation problem in the framework of optimal control on multi-domains. We consider an optimal control problem in which the controlled system contains a fast and a slow variables. This problem is reformulated as an Hamilton-JacobiBellman (HJB) equation. The main difficulty comes from the fact that the fast variable lives in a multi-domain. The ge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1973
ISSN: 0022-247X
DOI: 10.1016/0022-247x(73)90021-8